Life Extension of Dynamic Flexible Risers
A Case Study

Damir Tadjiev
Wood Group Kenny, Aberdeen (UK)
Outline

- Introduction
 - Current Status
 - Life Extension Overview
 - Flexible Risers
- Case Study
 - Scope
 - Methodology
 - Life Extension Assessment
- Discussion
 - Key Considerations
 - Other Possible LE Threats
- Summary and Conclusions
Introduction

- Current Status
 - Increasing number of pipelines in the North Sea approaching or exceeding their design life
 - May be suitable for further operation
 - Formal assessment required to confirm fitness for purpose

Life extension
- Documented justification for operating system beyond its original design life [Norsok Y-002]
- Process to evaluate if LE of a facility and its SSC is acceptable with respect to technical and operational safety [Sintef A15322]
Introduction (cont’d)

LE using same degradation model and Current condition assessment
[Norsok Y-002]

LE using new degradation model (new industry practice or operating conditions)
[Norsok Y-002]
Introduction (cont’d)

- Flexible risers
 - Multi-layered structures
 - Different materials / specific threats
 - Bespoke ancillary equipment
 - Some operate in harsh environment

- Life Extension
 - Mainly based on design / IMR data
 - Limited inspection methods
 - Main concern internal sheath / armour wires
 - Driven by accepted degradation models
Case Study

- Field Overview
 - North Sea (UKCS)
 - Deep water
 - Turret-moored FPSO with flexible risers
 - Design life 25 years

- Scope of Work
 - 10 dynamic risers approaching end of design life
 - ×1 WI, ×1 Gas, ×8 production
 - 2 of the risers replaced during first 13 years
 - 5 out of 6 prod. risers flooded (since installation)
 - Further operation period 7 years
Case Study

- RBS
- RBS support wires
Case Study (cont’d)

- System break down
 - Layer by layer approach (+ end fitting)
 - Ancillary components considered separately
- Life extension
 - Long term prediction of likely degradation threats
 - Industry practice: API 17B / Sintef A15322
Carcass (Duplex)

- Credible life extension threats
 - Pitting (H₂S)
 - Thinning (erosion)
- PoF
 - Low (prod/gas, no carcass in WI)
 - H₂S < material limits, dry gas
 - Sand levels < design limits
 - Jumper dissection OK
- Recommendations
 - Ongoing IMR
 - Erosion calculations (target rate) to confirm when thickness will reach minimum allowable
Pressure Sheath (PA-11, HDPE)

- Credible life extension threats
 - Ageing embrittlement
 - PA-11 (prod/gas): physical + chemical ageing
 - HDPE (WI): physical ageing only
 - PoF
 - Low for prod/gas
 - Low operating t, 17TR2 analysis >100 years
 - Jumper dissection showed no concerns
 - Medium for WI (no coupons)
- Recommendations
 - Ongoing IMR
 - Ensure enough coupons until new CoP
 - Ageing validation for HDPE
Armour Wires (Carbon Steel)

- Credible life extension threats
 - Fatigue (dry), C-F (flooded)
- PoF
 - Low (dry)
 - Fatigue life > 100 years
 - Medium (flooded)
 - C-F life = original CoP + 9 years
 - Known damage locations clamped
 - Minimal general wall loss expected (CI)
- Recommendations
 - Ongoing IMR (inc. repair clamps)
 - Remove redundant shackles
 - CP assessment
Anti Wear Tapes (PA-11)

- Credible life extension threats
 - Wear
 - Embrittlement (cracking)
- PoF
 - Low (>100 years)
 - Based on pressure sheath
 - Worst case flooded risers
 - Low operating bore t
 - Dissections showed wear not a concern

- Recommendations
 - Ongoing IMR
Outer Sheath (PA-11)

- Credible life extension threats
 - Rupture (inadequate venting)
 - Ancillary equipment failure
- PoF
 - Low (prod/gas, venting)
 - Regular RAVT / vent system CVI
 - Assuming shackles removed
 - Medium (all, ancillary equipment)
 - See ancillary equipment
- Recommendations
 - Ongoing IMR
 - Riser + ancillary equipment!
End-fitting

- Credible life extension threats
 - Marine corrosion
- PoF
 - Low
 - Ni-based coatings have proven to be effective
 - Industry experience shows no concerns
 - Dissections showed no concerns

- Recommendations
 - Ongoing IMR
Ancillary Equipment

- Credible life extension threats
 - Corrosion / fatigue
- PoF
 - Medium (hold down/back system)
 - Historical CP issues (all rectified)
 - Fatigue assessment only until CoP
 - Low (RBS + support wires)
 - Sufficient fatigue life for RBS
 - Regular replacement of wires
- Recommendations
 - Ongoing IMR
 - HD/HB fatigue assessment using new MetOcean data
Case Study – LE Risk Summary

<table>
<thead>
<tr>
<th>Component</th>
<th>P1</th>
<th>WI</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>Gas</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible pipe section c/w end-fittings</td>
<td></td>
</tr>
<tr>
<td>Carcass</td>
<td>L</td>
<td>N/A</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Internal sheath</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Armour wires</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Anti-wear tapes</td>
<td>L</td>
</tr>
<tr>
<td>Outer sheath</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>End-fittings</td>
<td>L</td>
</tr>
<tr>
<td>Ancillary equipment</td>
<td></td>
</tr>
<tr>
<td>RBS + RBS wires</td>
<td>L</td>
</tr>
<tr>
<td>Hold back system</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Hold down system</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

NB:
1. Good quality IMR data
2. No gaps in operational data
3. Full history of repair & modifications
4. Lessons learnt from dissections

Relatively new risers with design life > new CoP
Discussion

- Key considerations
 - Data availability/quality/confidence (DFI, IMR)
 - Key input into LE process
 - Lack of data/confidence → conservative assumptions
 - Includes history of repair and modifications
 - Industry experience
 - Experience from similar equipment
 - SureFlex JIP / retired pipe dissections
 - Knowledge transfer
 - Standard assumption – transfer of knowledge from retiring personnel and during change of ownership
Discussion

- Key considerations (cont’d)
 - IMR
 - No reduction assumed in capability to monitor, assess, and maintain the risers (PoF impact)
 - Any major change in operating/environment conditions will require LE revisit (degradation model)
 - Riser ancillary equipment
 - RBS cannot be repaired in service
 - Consider fatigue life in conjunction with riser fatigue life
 - CS repair clamps may require CP retrofits / change-out
 - CP system
 - Option 1: anode assessment + CP retrofits
 - Option 2: GVI/CP + repair clamps
Discussion

- Other possible LE threats
 - External sheath embrittlement
 - Insulation from RBS / clamps
 - Ageing → cracking
 - Mitigation: improved design/material
 - Marine Growth
 - Reduced buoyancy (LP coral, 3 Te/m³)
 - Altered catenary → sheath damage
 - Mitigation: GVI + MG removal
 - Outer sheath abrasion
 - Abrasion at J-tube exit / touch-down
 - Annulus flooding → reduced fatigue life
 - Mitigation: GVI / improved design

www.hse.gov.uk
Summary & Conclusions

- Case study
 - LE assessment of 10 dynamic risers c/w ancillary eq.
 - Layer-by-layer approach + ancillary equipment
 - Risk assessment based on long-term prediction of credible degradation mechanisms
 - LE possible (min 9 years, corrosion fatigue)

- General
 - Flexible riser LE requires specialist knowledge
 - LE mainly based on design / IMR data
 - Industry experience / dissection is a key input
 - Ongoing IMR required during further operation period to ensure acceptable integrity level
Acknowledgements

• Mark Murray
 • Risers Delivery Team Lead at WGK
• John Picksley
 • Risers Technical Authority at WGK
• Ian MacLeod
 • Pipelines Technical Authority at WGK